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Open-loop sustained chaos and control: A manifold approach
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We present a general method for preserving chaos in nonchaotic parameter regimes as well as preserving
periodic behavior in chaotic regimes using a multifrequency phase control. The systems considered are non-
linear systems driven at a base frequency. Multifrequency phase control is defined as the addition of small
subharmonic amplitude modulation coupled with a phase shift. By implementing multifrequency control, stable
and unstable manifold intersections in postcrisis regimes may be manipulated to sustain chaos as well as to
sustain periodic behavior. The theory and a preliminary experiment are demonstrated for a CO2 driven laser.
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I. INTRODUCTION

In the present paper we present an open-loop procedu
sustaining chaos in dynamical systems in regions where
chaotic attractor disappears. Chaos can be a desirable be
ior in biological @1#, mechanical@2#, electrical@3#, and opti-
cal systems@4#. In mechanics, small amplitude chaos, whe
the energy is spread over several modes, may be prefe
to high amplitude resonant behavior@5,6#. Excellent critical
examples of sustaining chaos occur in population model
which the disappearance of chaos leads to the extinctio
one of the species in the model, and power systems in w
voltage collapse is explained as a crisis in a chaotic attra
@3#. Sustained chaos is also used in encoding informatio
nonlinear optical communications schemes@4# in diagnosing
biological dynamics of pathological phenomena@7,1,8#.

Once chaotic behavior appears as an attractor, chaos
cally and dramatically disappears as a result of a cri
which is an abrupt change from chaos to periodic behavio
a critical parameter value of the system@9#. The crisis occurs
when the chaotic attractor collides with the stable manif
of an unstable periodic orbit, this stable manifold being,
the same time, the basin boundary of the chaotic attra
@10,11#. Such a saddle is called a basin saddle since it lies
the basin boundary of the attractor and regions around su
saddle form escape regions for the chaotic trajectories re
ing in nonchaotic behavior. Previous techniques for sust
ing chaos have been designed around a feedback co
mechanism in which a parameter or state variable was u
to maintain chaos by reinjecting the dynamics into a reg
containing a chaotic saddle@1–3,12–14#.

In contrast, the topology of the basin boundary sad
manifold structure may be used to design parameter con
algorithms for sustaining chaos in parameter regimes whe
crisis occurs@15,16#. Chaos is sustained by adjusting a sy
tem parameter discretely based on measuring a time s
obtained from the system, and using embedding method
1063-651X/2002/66~2!/026213~7!/$20.00 66 0262
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reconstruct the dynamics in a phase space. Specifically,
system was treated as a black box and the dynamics re
structed from time series measurements. Nonetheless,
above-mentioned techniques all make use of feedback in
mation that must be gleaned from a measured time se
Implementing such schemes in practice can easily be don
systems that operate on very slow time scales, such as in
@12#, where operating frequencies are of the order of 1 H
Fast time scale applications, such as optical systems, req
control interventions of the order of a 1-ms time scale to take
place. Such control intervention, though not impossible,
difficult to implement in practice.

In the present paper we take a different approach to s
taining chaos. The approach still excites chaos, but it is
open-loop procedure that can be designed so that stable
otic regions may be achieved in places where these were
stable previously. The procedure starts with a periodica
driven system having a drive amplitude as an adjustable
rameter. The drive amplitude is tuned so that the sys
operates in a crisis regime. The new feature we add is on
resonant amplitude modulation~am!. That is, the amplitude
fluctuates at half the primary frequency. Additionally, a pha
difference between the amplitude modulation and prim
frequency is considered as an extra parameter. The add
of the amplitude modulation allows extra manifold control
low energies in fast time scale systems. Moreover, it is ea
implemented in a large class of experiments that are for
by an external drive frequency.

The advantage of our method is that we can initiate
without any knowledge of a crisis in a chaotic attractor.
our previous algorithms@15,16# accurate knowledge of the
crisis region was necessary. Also the computational ef
involved in our current approach is minimal since the tim
series analysis and phase-space reconstruction is not n
sary any more. The parameter fluctuations used to sus
chaos in previous algorithms@1,2# required either faithful
reconstruction of the phase space at the crisis or knowle
13-1
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of the basin boundary of the chaotic attractor. In previo
methods it was a delicate problem to re-excite chaos once
system settled to periodic behavior@16#. In the present ap-
proach this is no longer an issue due to the special desig
the drive amplitude.

The paper is organized as follows. In the following se
tion we present the general setup for multifrequency drivi
We follow with a section on the CO2 laser model that we
worked with. In Sec. IV, we discuss the bifurcation structu
of the model and analyze the control procedure from a p
turbation analysis point of view. In Sec. V, we present n
merical examples and the associated topology. We end
paper with a conclusion section that includes prelimin
experimental results done on a driven CO2 laser.

II. THE PROBLEM SETUP

To define the problem, we consider the general case
dynamical system that is driven periodically. That is,
F:RnRI→Rn is a vector field depending on time and a p
rameterd lies in a bounded intervalI, then the system we
consider is

dx

dt
5F~x,t,d!, ~1!

whereF(x,t,d)5F(x,t11,d). The solution to such a system
is assumed to have a branch of periodic orbits of a gi
harmonic solution, which arises from a saddle node bifur
tion. In addition, the bifurcation diagram goes through
period-doubling route to chaos via a crisis mitigated by
saddle branch of periodic orbits. That is, the saddle branc
orbits interacts with the chaotic attractor at some param
value to cause a crisis in which the chaotic attractor dis
pears, and the remaining attractor window is a periodic o
belonging to the attracting branch of the saddle-node bi
cation. ~See Fig. 1 for the schematic picture.! In this paper,
we assume that the unstable manifold of the periodic sa
branch is one dimensional.

So that control of some sort may be achieved within
drive amplitude parameterd, we further assume that there

FIG. 1. A schematic picture illustrating the general bifurcati
diagram. Coexisting chaotic and periodic attractors are sho
along with a branch of periodic saddles.
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a subharmonic amplitude modulation. That is, we letd
5d1@11d2p(t1f)#, where p(t121f)5p(t1f). Spe-
cifically, we assume the amplitude modulation period is su
that it is in resonance with the main drive. Here we assu
that the frequency is 1/2 of the main drive frequency. W
remark that in a previous paper, a 1:1 type of drive was u
in a Melnikov analysis to create chaotic behavior@17#. How-
ever, it requires the use of a known unperturbed homocl
orbit from which perturbation should occur@17#, and as such
is a local perturbation method. Finally, we introduce a re
tive phasef as a second parameter, which we will adjust
control the bifurcations locally via period doubling, as we
as globally via manifold crossings.

The assumption here is that chaos disappears due
crisis, that is due to the interaction of the saddle manifo
with the chaotic attractor. In the case of quadratic nonline
ties used in modeling CO2 lasers, it is the intersection of th
stable and unstable manifolds that cause a complete des
tion of the basin of attraction of the chaotic attractor, resu
ing in a globally attracting periodic attractor. This phenom
enon is universal, as long as the unstable manifold of
saddle branch is one dimensional in Ref.@11#. We now de-
scribe our physical model in which we detail our analysis

III. THE AMPLITUDE MODULATION LASER MODEL

We consider the laser rate equations for a single mo
homogeneously broadened modulated laser, modeled by
intensity I and population inversionD. The periodic modu-
lations of the cavity decay rate are modeled byk(t8)
5k0@11D cos(st8)#, whereD ands are the amplitude and
frequency of the modulations, respectively. By rescaling ti
by letting s5k0t8, the equations governing the time beha
ior are

dI

ds
52I @211AD2D cos~Vs!#,

dD

ds
5g@12D~11I !#. ~2!

HereA is the pump parameter andg5g i /k0 is the loss rate
for the population scaled by the cavity decay rateV5s/k0.
We rescale the problem following Ref.@18# by shifting the
steady solution to the origin, and rescaling the state varia
and time we obtain

dx

dt
52y2ex~a1by!,

dy

dt
5~11y!@x2d~ t !cos~vt !#. ~3!

We let e15e(a1b) and e25eb, where 11y and x denote
~scaled! intensity and population inversion. In Eq.~3!, d(t)
5d1@11d2cos(v/21f)#, so that the amplitude modulatio
is in a 1:2 resonance with respect to the cavity drive. T
will satisfy the above hypotheses in Eq.~1!.

n,
3-2
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When d250, Eq. ~3! acts as a damped driven nonline
oscillator, where the drive is at frequencyv. If we fix e1
50.09 ande250.003, we identify the crisis regime by usin
d1 as the bifurcation parameter. In Fig. 2, we see that asd1
varies, a period doubling route to chaos occurs and coex
with a period-2 attractor that emanates from a saddle-n
bifurcation. It is well known that the period-2 saddle caus
the destruction of the chaotic attractor. The result is that a
the crisis a chaotic saddle exists along with a period attrac

Therefore, coexisting with the chaotic attractor is a bran
of periodic orbits of period-2 emanating from a saddle-no
bifurcation point. The period-2 saddle mitigates the crisis
similar saddle node of period 3 similarly controls th
period-3 crisis. We examine the structure of bifurcations a
manifolds in the presence of subharmonic amplitude mo
lations.

The chaotic attractor disappears as the direct result of
topology of the manifolds corresponding to the period
saddle. For reference purposes, we show the topology o
manifolds just after the crisis occurs, as shown in Fig.
There is only a periodic attractor~of period 4! in the figure.
The stable manifold separates the attractor from a cha
transient when the initial conditions start near the chao

FIG. 2. A bifurcation diagram showing the attractors ln(11y) of
Eq. ~3! as a function ofd1. The sampling was done at half the driv
frequency, with only the primary drive frequency being active. T
abrupt widening of the attractors denotes boundary crises, w
stable manifold boundaries intersect with the attractors. See
@11# for details, which shows that the hypotheses of Eq.~1! are
satisfied. The axes are dimensionless quantities defined by Eqs~3!.
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saddle.~See Ref.@15# for details.! By varying fluctuations
about the base parameterd1, it is known that if one monitors
the region about the saddle, a closed loop method of sus
ing chaos can be done to excite a chaotic saddle@12,15#.
However, it is most difficult to implement in optical system
since the control loop has to sample and respond rapidly
the order of a microsecond. Therefore, we examine the st
ture of bifurcations and manifolds in the presence of subh
monic amplitude modulations.

IV. PERIOD-DOUBLING MODIFICATION

The effect of the amplitude modulation at half the fr
quency is expected to play a role in the global bifurcations
the CO2 laser. Although the main goal is to manipulate t
manifold intersections of a mitigating saddle orbit, no curre
analytic method exist to handle the class of dynamic mod
with quadratic nonlinearities. However, as stable and
stable manifolds of that saddle come to intersect as a fu
tion of a parameter, it is numerically verified that the locati
of a period-doubling bifurcation off a stable branch al
changes. Therefore, in this section we show how the sub
monic amplitude modulation changes the period-doubling
furcation point as a function of amplitude and phase.

Consider Eq.~3! where

d~ t !5d1@11d2~v2t1f!#. ~4!

Since the chaotic saddles that occur in the crisis regi
occur as the result of primary saddle-node bifurcations@11#,

re
ef.

FIG. 3. The picture illustrates the manifold structure just pas
crisis value atd151.9 where the phase space is strobed at
primary forcing frequency. The only attractor present is a perio
attractor. The chaos is transient due to the intersection of the
stable and stable manifolds of the period-2 saddle. The axes
dimenionless quantities defined by Eqs.~3!.
3-3
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they contain oscillations of large pulse amplitude. We exa
ine the large amplitude pulsations by deriving a Poinc´
map. The surface of section is defined as when the pop
tion inversion reaches its minimum value, just after the em
sion of a pulse where the intensity is small (y'0). The
method used to derive the map for the laser was first p
sented in Ref.@18# for the case ofe50 ~no damping! and
d250 ~single-frequency modulation!. The authors were able
to accurately locate period-doubling bifurcations of the pe
odic subharmonic-resonance solutions. The map has bee
tended by Carr and co-workers@19,20# to account for dissi-
pation. The saddle-node bifurcation to periodic solutio
could be determined in addition to the period-doubling bif
cations. Newellet al. @21# used a similar map to examine
two-frequency modulation. However, in their case the t
modulations acted independently and were not in the
configuration.

For the present analysis we ignore the effects of diss
tion by settinge50, and focus on how the AM modulatio
effects the period-doubling bifurcation of the primary res
nances. The map is derived in the same way as in Ref.@18#
and we obtain

tn115tn22xn , ~5!

xn115xn12d~ tn11!cos~v1tn11!, ~6!

wherev15v is the primary modulation frequency. The tim
tn is when the inversion reaches its minimumxn on the pe-
riodic orbit. Periodic orbits of Eq.~3! are fixed points of the
map~5! defined byxn115xn5xp andtn115tn1P, whereP
is defined as the period. The fixed point conditions are s
stituted into the map~5! to obtain

tn56
p

2
1nP, P5

2pm

v1
~m is an integer!, xp52

P

2
.

~7!

The results are the same as for the case of only a si
modulation. Subharmonic resonances are differentiated
the parameterm51,2, . . . . The phase 6(p/2) indicates
there are two solutions. These appear through a saddle-
bifurcation that in the presence of dissipation (eÞ0) occurs
for nonzero forcing (d1Þ0).

Period-doubled solutions are defined by the conditio
xn125xn and tn115tn12P. The two conditions that de
scribe the period-doubled solutions are implicit and diffic
to analyze in general. However, progress is possible if
examine close to the period-doubling bifurcation. This is
complished by setting

tn122tn115P1t, tn112tn5P2t. ~8!

The period-doubling bifurcation is defined byt50 and
tn115tn . We considert!1 and assume that the am mod
lation term is a small perturbation to the primary modulatio
Assuming expansions oftn ,d1 ,d2 in t along with the
period-doubling conditions~8! are substituted into the ma
~5! we analyze at each order ort.
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The period-doubling results depend on the relations
between the primary frequencyv1 and the am modulation
frequencyv2. We consider the simplest cases ofv25v1/2
and v25 lv1, where l is an integer, to obtain a bifurcatio
equation that relates the modulation amplitude to the per

Whenv25 lv1 , l is an integer, or whenl 5 1
2 , m is even,

the bifurcation equation is the same and is given by

d15
1

v1
2

d2

v1
cosS 2

p

2
v21f D1

d2
2

v1
cos2S 2

p

2
v21f D

1
1

24
v1t21O~t3!. ~9!

If there is no am modulation,d250 and we recover the
results of Schwartz and Erneux@18#. The am modulation is a
constant with respect tot. Hence, it causes a shift in th
period-doubling bifurcation point (t50) from d151/v1 to
d15(1/v1)1O(d2). The phasef effects not only the mag-
nitude of the shift but also whether the bifurcation is a
vanced or delayed. This agrees with the phase effects on
global manifold crossings below.

When l 5 1
2 , m is odd, we obtain a different bifurcation

result (v25v1/2, but the primary resonance has odd5m).
In this case the bifurcation equation is given by

d15
1

v1
1Fd2

4
sinS 2

p

2
v21f D Gt1

1

24
v1t21O~t3!.

~10!

The am modulation produces a term linear int. This causes
a shift of the period-doubling branch of solutions off th
primary branch. The local bifurcation is no longer a pit
fork but transcritical. Also, there is now anO(d2t) region of
bistability between the period-doubled branch and the or
nal subharmonic resonance.

Finally, we note that the shift in the bifurcation curve
caused by the am modulation are different than the cas
two independent modulation frequencies, which were stud
in Ref. @21#. There the perturbation resulted in the destru
tion of the bifurcation point and an imperfect bifurcatio
results. For an imperfect bifurcation there is a smooth tr
sition from the primary to secondary branch instead o
definite bifurcation point.

The above analysis shows how the amplitude and ph
of the am modulation shifts the period-doubling bifurcati
of the subharmonic resonances and changes the topolog
the bifurcation. This will have a direct effect on the topolog
of the phase space as a whole and effect the transverse c
ings of manifolds. While the analysis cannot directly d
scribe the change in manifold crossings, it can be used
estimate the parameter values such that manifold cross
may be analyzed numerically. This is done in the followi
section.

V. NUMERICAL RESULTS OF AMPLITUDE MODULATION

Since the amplitude and phase modulation of the sec
harmonic predicts a shift in the location of the perio
3-4
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doubling branch off the primary periodic branch of orbits,
is reasonable to expect that global changes in the rela
positions of the stable and unstable manifolds of the sad
change as well. We consider the full amplitude modulat
model given in Eqs.~3!, where we compute solutions as

FIG. 4. ~Color! A figure depicting excited chaotic~red! and non-
chaotic~blue! regions as a function ofd2 andf. The parameters for
d1 , e1, ande2 in Eq. ~3! are chosen in the first crisis region, as
Fig. 3. See text for details.

FIG. 5. Manifold picture at the crisis valued51.9 for amplitude
and phase chosen in the red region in Fig. 4.d250.2 andf50.5.
The situation is that of bistability, where the chaotic attractor co
ists with the periodic attractor. The axes are dimenionless quant
defined by Eqs.~3!.
02621
ve
le
n
function of amplitude and phase of the subharmonic re
nance term. The fixed parameters are tuned so that varia
in amplitude and phase are referred to the control manifo
in Fig. 3 where only a globally attracting orbit exists. Th
results are shown in Fig. 4. Notice there are two regio
consisting of two distinct lobes in which chaos can be e
cited. We now examine the manifold intersections of t
governing saddle orbits in each of the two regions: the
region and the blue region.

As it can be seen in Fig. 4, chaotic regions are clea
excited~regions in red!. However, in addition to the chaoti
attractors, there coexists a periodic attractor~blue region!.
That is, the chaotic attractor is not the unique attractor,
therefore, the amplitude and the phase must be chosen
propriately in order to excite the chaotic transient. The r
son multiple attractors coexist is due to the noncrossing
the stable and unstable manifolds of the period-2 saddle
given in Fig. 5. The situation is quite similar to that of th
bistable parameter regions in the absence of any ampli
modulation. That is, the stable manifold is the distinct ba
boundary separating the periodic and chaotic attractors.

In contrast, when applying open-loop control there exi
a global chaotic attractor for values of the drive paramet
corresponding to red regions in Fig. 3. The manifolds
presented in Fig. 6. Notice that in addition to the unsta
manifold intersecting the stable manifold from the right, t
unstable manifold to the left of the saddle cuts through
basins. That is, there exists only one chaotic attractor
parameters chosen in the red lobe regions.

-
es

FIG. 6. Manifold picture when open-loop control is applie
There exists a unique chaotic attractor when the amplitude
phase are chosen in the red region of Fig. 4.d250.2 andf54.75.
The axes are dimenionless quantities defined by Eqs.~3!.
3-5
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VI. DISCUSSION

We have presented an open-loop control procedure to
duce chaos. The procedure can equally well induce perio
behavior in chaotic regions using the same type of param
sweep. The method is based on driving the system with a
resonance modulation and varying the amplitude and
phase of the drive in this modulation. The method is gene
and can be applied to any periodically driven dynamical s
tem that exhibits regions of chaos in its dynamics. The ty
of control we propose will access these regions. The sys
was applied to a two-level periodically driven CO2 laser
model. It works equally well on higher-dimensional mode
that are going to be addressed in forthcoming papers. M
over, the chaotic regions that can be generated exhibit a
versal character, in the sense that they are qualitatively s
lar in various models, as it will be shown in forthcomin
papers. The success of inducing chaos was explained b
change in topology that occurs: at a crisis the horseshoe
namics that sustains chaos destabilizes and only chaotic
sients remain. By implementing amplitude modulation in
1:2 resonance, the topological structure about the sa
which is accountable for the disappearance of the cha
attractor is recreated making chaos possible. The metho
easy to implement in experiments since it does not req
embedding methods applied at the crisis region as in pr
ous algorithms.

Finally we show a preliminary CO2 laser experiment in

FIG. 7. A bifurcation picture from a CO2 laser experiment. Plot-
ted is the laser intensity strobed at the primary frequency as a f
tion of the modulation amplitude~top panel!. In the crisis regime,
the laser intensity as a function of time shows periodic beha
only ~bottom panel!.
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which the above ideas have been tested. Details of the
experiment will be presented elsewhere. In Fig. 7, a bifur
tion picture of a CO2 laser experiment shows the initial b
furcation prior to turning on the amplitude modulation. Th
crisis region in which only periodic behavior occurs is show
as a time series in panel~b!.

The frequency at which the laser was modulated was
kHz. To see if the manifold ideas work, we turned on t
amplitude forcing at 50 kHz, and varied the amplitude a
phase. The preliminary results for two distinct behaviors
shown below in Fig. 8. In both panels the amplitude mod
lation is fixed at 0.01. The two pictures show two differe
phases applied to the amplitude modulation. In panel~a!, the
phase was set atf50.1, which generates chaotic bursting.
panel~b!, the phasef50.4 generated periodic behavior. Th
experiment, although preliminary, does generate the cor
type of behavior based on the theory.
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FIG. 8. Time evolution of the laser intensity when an amplitu
modulation of 0.01 is applied to the periodic behavior~shown in
Fig. 7! emerging after the crisis. In the top panel, the phase of
applied perturbation is 0.132p and it continously reexcites chaoti
transients. In the bottom panel, the phase is 0.432p. In such a
case, only a slight modification of the periodic behavior is p
duced.
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