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We present a general method for preserving chaos in nonchaotic parameter regimes as well as preserving
periodic behavior in chaotic regimes using a multifrequency phase control. The systems considered are non-
linear systems driven at a base frequency. Multifrequency phase control is defined as the addition of small
subharmonic amplitude modulation coupled with a phase shift. By implementing multifrequency control, stable
and unstable manifold intersections in postcrisis regimes may be manipulated to sustain chaos as well as to
sustain periodic behavior. The theory and a preliminary experiment are demonstrated fordaive® laser.
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[. INTRODUCTION reconstruct the dynamics in a phase space. Specifically, the
system was treated as a black box and the dynamics recon-
In the present paper we present an open-loop procedure sfructed from time series measurements. Nonetheless, the
sustaining chaos in dynamical systems in regions where thabove-mentioned techniques all make use of feedback infor-
chaotic attractor disappears. Chaos can be a desirable behawation that must be gleaned from a measured time series.
ior in biological[1], mechanica[2], electrical[3], and opti- Implementing such schemes in practice can easily be done in
cal systems$4]. In mechanics, small amplitude chaos, wheresystems that operate on very slow time scales, such as in Ref.
the energy is spread over several modes, may be preferadl&2], where operating frequencies are of the order of 1 Hz.
to high amplitude resonant behavid,6]. Excellent critical ~ Fast time scale applications, such as optical systems, require
examples of sustaining chaos occur in population models igontrol interventions of the order of a/Ls time scale to take
which the disappearance of chaos leads to the extinction gflace. Such control intervention, though not impossible, is
one of the species in the model, and power systems in whicHifficult to implement in practice.
voltage collapse is explained as a crisis in a chaotic attractor In the present paper we take a different approach to sus-
[3]. Sustained chaos is also used in encoding information itaining chaos. The approach still excites chaos, but it is an
nonlinear optical communications scheniébin diagnosing  open-loop procedure that can be designed so that stable cha-
biological dynamics of pathological phenomdiial,g. otic regions may be achieved in places where these were not
Once chaotic behavior appears as an attractor, chaos tygtable previously. The procedure starts with a periodically
cally and dramatically disappears as a result of a crisisgriven system having a drive amplitude as an adjustable pa-
which is an abrupt change from chaos to periodic behavior atameter. The drive amplitude is tuned so that the system
a critical parameter value of the syst¢@j. The crisis occurs operates in a crisis regime. The new feature we add is one of
when the chaotic attractor collides with the stable manifoldresonant amplitude modulatigam). That is, the amplitude
of an unstable periodic orbit, this stable manifold being, affluctuates at half the primary frequency. Additionally, a phase
the same time, the basin boundary of the chaotic attractadifference between the amplitude modulation and primary
[10,11]. Such a saddle is called a basin saddle since it lies ofrequency is considered as an extra parameter. The addition
the basin boundary of the attractor and regions around suchaf the amplitude modulation allows extra manifold control at
saddle form escape regions for the chaotic trajectories resullew energies in fast time scale systems. Moreover, it is easily
ing in nonchaotic behavior. Previous techniques for sustainimplemented in a large class of experiments that are forced
ing chaos have been designed around a feedback contrby an external drive frequency.
mechanism in which a parameter or state variable was used The advantage of our method is that we can initiate it
to maintain chaos by reinjecting the dynamics into a regiorwithout any knowledge of a crisis in a chaotic attractor. In
containing a chaotic sadd[@-3,12—-14. our previous algorithm$15,16 accurate knowledge of the
In contrast, the topology of the basin boundary saddlecrisis region was necessary. Also the computational effort
manifold structure may be used to design parameter contrahvolved in our current approach is minimal since the time
algorithms for sustaining chaos in parameter regimes where geries analysis and phase-space reconstruction is not neces-
crisis occurd15,16. Chaos is sustained by adjusting a sys-sary any more. The parameter fluctuations used to sustain
tem parameter discretely based on measuring a time seriebaos in previous algorithmigl,2] required either faithful
obtained from the system, and using embedding methods teconstruction of the phase space at the crisis or knowledge
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a subharmonic amplitude modulation. That is, we &t
=011+ 6,p(t+ )], where p(t+2+¢)=p(t+¢). Spe-
cifically, we assume the amplitude modulation period is such
¢ Periodic Attractor that it is in resonance with the main drive. Here we assume
' that the frequency is 1/2 of the main drive frequency. We

‘ remark that in a previous paper, a 1:1 type of drive was used

in a Melnikov analysis to create chaotic behayibr]. How-

& e ever, it requires the use of a known unperturbed homoclinic
= _ Periodic Saddle orbit from which perturbation should occlt7], and as such
e T T T is a local perturbation method. Finally, we introduce a rela-

tive phaseg as a second parameter, which we will adjust to
control the bifurcations locally via period doubling, as well
> as globally via manifold crossings.
S The assumption here is that chaos disappears due to a
crisis, that is due to the interaction of the saddle manifolds
FIG. 1. A schematic picture illustrating the general bifurcation yith the chaotic attractor. In the case of quadratic nonlineari-
diagram_. Coexisting chao_tic _and periodic attractors are Shownties used in modeling CQasers, it is the intersection of the
along with a branch of periodic saddles. stable and unstable manifolds that cause a complete destruc-
tion of the basin of attraction of the chaotic attractor, result-

of the bqsm boundqry of the chaotic attra.ctor. In prewousmg in a globally attracting periodic attractor. This phenom-
methods it was a delicate problem to re-excite chaos once ﬂlﬁmn is universal, as long as the unstable manifold of the

system Settl.ed to periodic pehaviblr6]. In the pre_sent ap- sfa\ddle branch is one dimensional in Rgfl]. We now de-
proach this is no longer an issue due to the special design Leribe our physical model in which we detail our analysis.
the drive amplitude.

The paper is organized as follows. In the following sec-
tion we present the general setup for multifrequency driving. IIl. THE AMPLITUDE MODULATION LASER MODEL

We follow with a section on the COlaser model that we e consider the laser rate equations for a single mode,
worked with. In Sec. IV, we discuss the bifurcation structurenomogeneously broadened modulated laser, modeled by the
of the model and analyze the control procedure from a pefntensity | and population inversio®. The periodic modu-
turbation analysis point of view. In Sec. V, we present NU-ations of the cavity decay rate are modeled kyt')
merical _examples and_ the associated Fopology. We_end the xo[ 1+ A cos@t')], whereA and o are the amplitude and
paper with a conclusion section that includes preliminaryfequency of the modulations, respectively. By rescaling time

experimental results done on a driven £i@ser. by letting s= «t’, the equations governing the time behav-
ior are
Il. THE PROBLEM SETUP
To define the problem, we consider the general case of a ﬂ:m[_ 1+AD—A cogQs)],
dynamical system that is driven periodically. That is, if ds
F:R"RI—R" is a vector field depending on time and a pa-
rameteré lies in a bounded interval, then the system we dD
consider is EZV[l_D(lﬂ)]' )
%: F(x,t,0), (1) HereA is the pump parameter angd= v/« is the loss rate

for the population scaled by the cavity decay réte o/ «g.
We rescale the problem following R€f18] by shifting the

whereF(x,t,6) =F(x,t+1,0). The solution to such a system gte4qy solution to the origin, and rescaling the state variables
is assumed to have a branch of periodic orbits of a giveny,q time we obtain

harmonic solution, which arises from a saddle node bifurca-

tion. In addition, the bifurcation diagram goes through a dx

period-doubling route to chaos via a crisis mitigated by the i —y—ex(a+by),

saddle branch of periodic orbits. That is, the saddle branch of

orbits interacts with the chaotic attractor at some parameter

value to cause a crisis in which the chaotic attractor disap- d_y:(1+ )[x—8(t)cogd wt)] 3)

pears, and the remaining attractor window is a periodic orbit dt y '

belonging to the attracting branch of the saddle-node bifur-

cation. (See Fig. 1 for the schematic picturén this paper, We lete;=e(a+b) ande,=e€b, where 1+y andx denote

we assume that the unstable manifold of the periodic saddlescaled intensity and population inversion. In E), &(t)

branch is one dimensional. =51+ 5,cos@/2+ ¢) ], so that the amplitude modulation
So that control of some sort may be achieved within theis in a 1:2 resonance with respect to the cavity drive. This

drive amplitude parametef, we further assume that there is will satisfy the above hypotheses in Ed).
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FIG. 3. The picture illustrates the manifold structure just past a
0 1 T2 3 ' crisis value atd;=1.9 where the phase space is strobed at the
primary forcing frequency. The only attractor present is a period-4
attractor. The chaos is transient due to the intersection of the un-
81 stable and stable manifolds of the period-2 saddle. The axes are
dimenionless quantities defined by E¢3).

FIG. 2. A bifurcation diagram showing the attractors kx4 of
Eq. (3) as a function of5;. The sampling was done at half the drive saddle.(See Ref[15] for details) By varying fluctuations
frequency, with only the primary drive frequency being active. The gt the base paramety, it is known that if one monitors
abrupt widening of the attractors denotes boundary crises, wherfhe region about the saddle, a closed loop method of sustain-
stable manifc_)ld bogndaries intersect with the attractors. See Refng chaos can be done to excite a chaotic safti15.
[11] for details, which shows that the hypotheses of B.are 0y er it is most difficult to implement in optical systems,
satisfied. The axes are dimensionless quantities defined by(&gs. since the control loop has to sample and respond rapidly, of
the order of a microsecond. Therefore, we examine the struc-
ture of bifurcations and manifolds in the presence of subhar-
monic amplitude modulations.

When §,=0, Eq.(3) acts as a damped driven nonlinear
oscillator, where the drive is at frequenay. If we fix e;
=0.09 ande,=0.003, we identify the crisis regime by using
&, as the bifurcation parameter. In Fig. 2, we see thaf;as
varies, a period doubling route to chaos occurs and coexists
with a period-2 attractor that emanates from a saddle-node The effect of the amplitude modulation at half the fre-
bifurcation. It is well known that the period-2 saddle causesyyency is expected to play a role in the global bifurcations of
the dgs.trucnon of the chaotlc_ attractor. The result_ is that aftef,q CQ laser. Although the main goal is to manipulate the
the crisis a chaotic saddle exists along with a period attractopapjfold intersections of a mitigating saddle orbit, no current

Therefore, coexisting with the chaotic attractor is a branchypa\ytic method exist to handle the class of dynamic models
of periodic orbits of period-2 emanating from a saddle-nod&y;ith " quadratic nonlinearities. However, as stable and un-
bifurcation point. The period-2 saddle mitigates the crisis. Agtaple manifolds of that saddle come to intersect as a func-
similar saddle node of period 3 similarly controls the tjon of a parameter, it is numerically verified that the location
period-3 crisis. We examine the structure of bifurcations angys g period-doubling bifurcation off a stable branch also
manifolds in the presence of subharmonic amplitude modughanges. Therefore, in this section we show how the subhar-
lations. _ _ _ monic amplitude modulation changes the period-doubling bi-

The chaotic attractor disappears as the direct result of thg, cation point as a function of amplitude and phase.
topology of the manifolds corresponding to the period-2  cgnsider Eq(3) where
saddle. For reference purposes, we show the topology of the
manifolds just after the crisis occurs, as shown in Fig. 3. 8(t)= 611+ Sx(wot+ @)]. (4)
There is only a periodic attractgof period 4 in the figure.

The stable manifold separates the attractor from a chaotic Since the chaotic saddles that occur in the crisis regions
transient when the initial conditions start near the chaotimccur as the result of primary saddle-node bifurcatidris,

IV. PERIOD-DOUBLING MODIFICATION
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they contain oscillations of large pulse amplitude. We exam- The period-doubling results depend on the relationship
ine the large amplitude pulsations by deriving a Poincarebetween the primary frequenay,; and the am modulation
map. The surface of section is defined as when the populdrequencyw,. We consider the simplest cases @f= w4/2

tion inversion reaches its minimum value, just after the emisand w,=|w4, wherel is an integer, to obtain a bifurcation
sion of a pulse where the intensity is smajl~<0). The equation that relates the modulation amplitude to the period.
method used to derive the map for the laser was first pre- Whenw,=lw,, | is an integer, or wheh=3%, mis even,
sented in Ref[18] for the case ofe=0 (no damping and the bifurcation equation is the same and is given by

8,=0 (single-frequency modulationThe authors were able

to accurately locate period-doubling bifurcations of the peri- 1 & T § T

odic subharmonic-resonance solutions. The map has been exﬁlzw_1 "o, COS( —owat |+ P cos| — S5 w2t ¢)
tended by Carr and co-workef$9,20 to account for dissi-

pation. The saddle-node bifurcation to periodic solutions 1 ) 3

could be determined in addition to the period-doubling bifur- t o017 +0(7). ©)

cations. Newellet al. [21] used a similar map to examine a

two-frequency modulation. However, in their case the twof there is no am modulationg,=0 and we recover the

modulations acted independently and were not in the amesults of Schwartz and Erne{ik8]. The am modulation is a

configuration. constant with respect te. Hence, it causes a shift in the
For the present analysis we ignore the effects of dissipaperiod-doubling bifurcation point#{=0) from &;=1/w, to

tion by settinge=0, and focus on how the AM modulation s, = (1/w,)+0(5,). The phasep effects not only the mag-

effects the period-doubling bifurcation of the primary reso-pitude of the shift but also whether the bifurcation is ad-

nances. The map is derived in the same way as in[R8f.  vanced or delayed. This agrees with the phase effects on the

and we obtain global manifold crossings below.
Whenl=3, mis odd, we obtain a different bifurcation
th1=th=2Xn, (®)  result (w,=wy/2, but the primary resonance has odahn).
In this case the bifurcation equation is given by
Xpr1=Xp+28(thy1)cog w1ty 1), (6)
. . . . % . Tr 1 2 3
wherew; = w is the primary modulation frequency. The time 51=w—l+ 7 SN — 5ot ]| 7H Spwi 7+ O(77).

t,, is when the inversion reaches its minimwugnon the pe- (10)
riodic orbit. Periodic orbits of Eq(3) are fixed points of the

map(5) defined byx, . 1 =Xn=Xp andt,,;=t,+ P, whereP  The am modulation produces a term linearrirThis causes
is defined as the period. The fixed point conditions are suby shift of the period-doubling branch of solutions off the

stituted into the may5) to obtain primary branch. The local bifurcation is no longer a pitch
) b fork but transcritical. Also, there is now &(,7) region of
7T 7Tm . _ye . _ . ._
t,=*—+nP, P= (m is an integey, x,=— = bistability betwgen the period-doubled branch and the origi
2 w1 2 nal subharmonic resonance.
(7) Finally, we note that the shift in the bifurcation curves

~ caused by the am modulation are different than the case of
The results are the same as for the case of only a singlgvo independent modulation frequencies, which were studied
modulation. Subharmonic resonances are differentiated by, Ref.[21]. There the perturbation resulted in the destruc-
the parametem=1,2,.... Thephase *(#/2) indicates tion of the bifurcation point and an imperfect bifurcation
there are two solutions. These appear through a saddle-noggsults. For an imperfect bifurcation there is a smooth tran-
bifurcation that in the presence of dissipatia¥0) occurs  sition from the primary to secondary branch instead of a
for nonzero forcing §,+0). definite bifurcation point.

Period-doubled solutions are defined by the conditions The above analysis shows how the amplitude and phase
Xnt2=Xn and t,,;=t,+2P. The two conditions that de- of the am modulation shifts the period-doubling bifurcation
scribe the period-doubled solutions are implicit and difficult of the subharmonic resonances and changes the topology of
to analyze in general. However, progress is possible if wehe bifurcation. This will have a direct effect on the topology
examine close to the period-doubling bifurcation. This is ac-of the phase space as a whole and effect the transverse cross-

complished by setting ings of manifolds. While the analysis cannot directly de-
scribe the change in manifold crossings, it can be used to
thio—the1=P+7 thi—t=P—1. (8)  estimate the parameter values such that manifold crossings

may be analyzed numerically. This is done in the following
The period-doubling bifurcation is defined by=0 and section.
th+1=t,. We considerr<1 and assume that the am modu-
lation term is a small perturbation to the primary modulation
Assuming expansions of,,d;,6, in 7 along with the
period-doubling condition$8) are substituted into the map Since the amplitude and phase modulation of the second
(5) we analyze at each order @r harmonic predicts a shift in the location of the period-

V. NUMERICAL RESULTS OF AMPLITUDE MODULATION
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FIG. 4. (Color) A figure depicting excited chaoticed) and non-
chaotic(blue) regions as a function af, and¢. The parameters for
o1, €1, ande;, in Eq. (3) are chosen in the first crisis region, asin  F|G 6. Manifold picture when open-loop control is applied.
Fig. 3. See text for details. There exists a unique chaotic attractor when the amplitude and

. . L .. phase are chosen in the red region of Figé4=0.2 and¢=4.75.
doubling branch off the primary periodic branch of orbits, it The axes are dimenionless quantities defined by E3js.
is reasonable to expect that global changes in the relative
positions of the stable and unstable manifolds of the saddle

change as well. We consider the full amplitude modulation ) ) i
model given in Eqs(3), where we compute solutions as a function of amplitude and phase of the subharmonic reso-
nance term. The fixed parameters are tuned so that variations

in amplitude and phase are referred to the control manifolds
in Fig. 3 where only a globally attracting orbit exists. The

results are shown in Fig. 4. Notice there are two regions
consisting of two distinct lobes in which chaos can be ex-
cited. We now examine the manifold intersections of the
governing saddle orbits in each of the two regions: the red
region and the blue region.

As it can be seen in Fig. 4, chaotic regions are clearly
excited(regions in refl However, in addition to the chaotic
attractors, there coexists a periodic attradtoue region.

That is, the chaotic attractor is not the unique attractor, and
therefore, the amplitude and the phase must be chosen ap-
propriately in order to excite the chaotic transient. The rea-
son multiple attractors coexist is due to the noncrossing of
the stable and unstable manifolds of the period-2 saddle, as
given in Fig. 5. The situation is quite similar to that of the
bistable parameter regions in the absence of any amplitude
modulation. That is, the stable manifold is the distinct basin
boundary separating the periodic and chaotic attractors.

In contrast, when applying open-loop control there exists
a global chaotic attractor for values of the drive parameters
corresponding to red regions in Fig. 3. The manifolds are

FIG. 5. Manifold picture at the crisis valug=1.9 for amplitude ~ Presented in Fig. 6. Notice that in addition to the unstable
and phase chosen in the red region in Figé4=0.2 and¢$=0.5. manifold intersecting the stable manifold from the right, the
The situation is that of histability, where the chaotic attractor coex-unstable manifold to the left of the saddle cuts through all
ists with the periodic attractor. The axes are dimenionless quantitieBasins. That is, there exists only one chaotic attractor for
defined by Eqgs(3). parameters chosen in the red lobe regions.

In(1+y)

In(x)

In(1+y)
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FIG. 7. Abifurcation picture from a CQlaser experiment. Plot- FIG. 8. Time evolution of the laser intensity when an amplitude

ted is the laser intensity strobed at the primary frequency as a fungnodulation of 0.01 is applied to the periodic behavishown in
tion of the modulation amplitudéop panel. In the crisis regime, Fig. 7) emerging after the crisis. In the top panel, the phase of the
the laser intensity as a function of time shows periodic behavio@pplied perturbation is 0227 and it continously reexcites chaotic
only (bottom panél transients. In the bottom panel, the phase is<®4. In such a

case, only a slight modification of the periodic behavior is pro-
VI. DISCUSSION duced.

We have presented an open-loop control procedure 10 iNghich the above ideas have been tested. Details of the full
duce chaos. The procedure can equally well induce periodigyperiment will be presented elsewhere. In Fig. 7, a bifurca-
behavior in chaotic regions using the same type of parametgj,, nictyre of a CQ laser experiment shows the initial bi-
sweep. The method is based on driving the system with a 1ig, . ation prior to turning on the amplitude modulation. The

resonance modulation and varying the amplitude and thejgi region in which only periodic behavior occurs is shown
phase of the drive in this modulation. The method is generalg 5 time series in panéd).

and can be applied to any periodically driven dynamical Sys- e frequency at which the laser was modulated was 100
tem that exhibits regions of chaos in its dynamics. The typg i, To see if the manifold ideas work, we turned on the
of control we propose will access these regions. The systemy it de forcing at 50 kHz, and varied the amplitude and
was applied to a two-level periodically driven gdaser  ,haqe The preliminary results for two distinct behaviors are
model. It works equally well on higher-dimensional models g, ovn below in Fig. 8. In both panels the amplitude modu-
that are going to be addressed in forthcoming papers. Morgainn s fixed at 0.01. The two pictures show two different
over, the chaotic regions that can be generated exhibit a unip55eg applied to the amplitude modulation. In paaeithe
versal character, in the sense that they are qualitatively SimEhase was set at=0.1, which generates chaotic bursting. In
lar in various models, as it will be shown in forthcoming anel(b), the phases= 0.4 generated periodic behavior. The

papers. The success of inducing chaos was explained by the o iment, although preliminary, does generate the correct
change in topology that occurs: at a crisis the horseshoe dys pe of behavior based on the theory.
namics that sustains chaos destabilizes and only chaotic trarY—

sients remain. By implementing amplitude modulation in a
1:2 resonance, the topological structure about the saddle
which is accountable for the disappearance of the chaotic I.B.S. and L. T. were supported by the Office of Naval
attractor is recreated making chaos possible. The method Research, T.C. was supported by the National Science Foun-
easy to implement in experiments since it does not requirélation through Grant No. DMS-9803207, and R.M. was sup-
embedding methods applied at the crisis region as in previpoted by EC Project No. HPRN CT 2000 00158. We also
ous algorithms. would like to thank E. Allaria for collecting the experimental
Finally we show a preliminary COlaser experiment in measurements.
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